PyTorch 深度学习的十个核心概念
发布时间:2024-11-14 21:51:40点击:
本文介绍了 PyTorch 中的 10 个核心概念,包括张量、自动求导、动态计算图、模型定义、损失函数、优化器、数据加载、模型保存与加载、转换和 GPU 支持。通过这些概念的学习和实践,你可以更好地理解和使用 PyTorch 构建和训练深度学习模型。最后,我们还通过一个实战案例展示了如何使用 PyTorch 构建一个简单的卷积神经网络来识别手写数字。
发布时间:2024-11-14 21:51:40点击:
本文介绍了 PyTorch 中的 10 个核心概念,包括张量、自动求导、动态计算图、模型定义、损失函数、优化器、数据加载、模型保存与加载、转换和 GPU 支持。通过这些概念的学习和实践,你可以更好地理解和使用 PyTorch 构建和训练深度学习模型。最后,我们还通过一个实战案例展示了如何使用 PyTorch 构建一个简单的卷积神经网络来识别手写数字。